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Asymptotically stable phase synchronization revealed by autoregressive circle maps
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A specially designed of nonlinear time series analysis is introduced based on phases, which are defined as
polar angles in spaces spanned by a finite number of delayed coordinates. A canonical choice of the polar axis
and a related implicit estimation scheme for the potentially underlying autoregressive circlaexaphase
map guarantee the invertibility of reconstructed phase space trajectories to the original coordinates. The
resulting Fourier approximated, invertibility enforcing phase space map allows us to detect conditional
asymptotic stability of coupled phases. This comparatively general synchronization criterion unites two exist-
ing generalizations of the old concept and can successfully be applied, e.g., to phases obtained from electro-
cardiogram and airflow recordings characterizing cardiorespiratory interaction.

PACS numbgs): 05.45.Xt, 05.45.Tp, 87.19.Hh, 87.80.Vt

INTRODUCTION approach to autoregressive circle mapsxt phase maps
which express the priori correlation of successive phases
The relevance of deterministic dynamics is not limited toand the potentially underlying low dimensional dynamics.
situations where the rules of change can be derived by @hus, Fourier approximated, invertibility enforcing phase
mechanistic(deductive approach. The alternativénduc-  spaceFIPS maps may be seen as a promising alternative to
tive) approach is aimed at the estimation of phenomenologiexisting global approximation methods in nonlinear time se-
cal dynamic models, based on the use of a sufficient amoumtes analysis like radial basis function approximat{@&9].
of empirical data. A common starting point in modern, non-The main advantage, however, comes into view in the mul-
linear time series analysj4—3] is the assumption that a state tivariate case where FIPS maps can be used to analyze syn-
space reconstruction based on a finite number of succeedimfjronization phenomena, including those with nonstationary
samplegqcoordinatesrepresents an embedding of the under-amplitudes.
lying deterministic dynamics, i.e., reconstruction and origi- The old concepf10] of synchronization has recently re-
nal dynamics are expected to be topologically equivalentceived two important extensiofis,6,11—-1% opening the no-
This implies the existence of a diffeomorphic m@smooth  tion to nonidentical and aperiodic coupled oscillators: gener-
map with a smooth invergdinking reconstructed attractors alized synchronization of unidirectionally coupled oscillators
to those of the underlying dynamics. [12-15 and phase synchronizati¢f,6,11. The central no-
One of the major problems in nonlinear time series analytion of generalized synchronization is an asymptotically
sis is to find a sufficiently general class of autoregressivestable mag12-16 (Afraimovich map which relates simul-
models for which the parameter estimatioegressiopprob-  taneous states of the two oscillatgssibsystems The detec-
lem is feasible. One promising solution is the introduction oftion of generalized synchronization in time series analysis
angle or phase type variables prior to the estimation stefhas so far been focused on contindifys] or predictability
Due to the periodic character of phase variables this addi-17] properties of the Afraimovich map. The present study
tional transformation allows the use of finite Fourier series touses the universal and efficient approximation features of
approximate the phase space dynamitisis important to  FIPS maps to introduce the asymptotic stability criterion to
note that the notion “phase space” is often used as a syntime series analysis. In spite of the smoothness of the dynam-
onym for state space, in contrast to the present, more spé&s expressed byfinite orde)y FIPS maps, this criterion is
cific, meaning based on angle$iowever, the transforma- very flexible concerning the properties of the asymptotically
tion of time series to the well-known Hilbert phalge-7] is  stable maps. Thus asymptotic stability of coupled FIPS map
an irreversible step which excludes, e.g., studies of the trangeconstructions turns out to be a unifying criterion for a
formation property of Hilbert phase dynamics to the originalwealth of synchronization phenomena including generalized
coordinates or to different phase type variables. As a relategynchronization in unidirectionally coupled systems and the
feature, Hilbert phases evidence a trivial long-range autocomwhole family of (n:m) phase synchronizations.
relation, which is difficult to distinguish from an underlying  The asymptotic stability criterion contributes to the an-
determinism. swer of a recently disputed question in theoretical physiol-
A basic idea of the present study is to use the ambiguityogy: whether cardiorespiratory interaction leads to synchro-
of the phase definition to select a special clas&cahonical  nization [6,18]. Cardiorespiratory interaction, whose
phases, for which the smoothness of the backtransformatioscientific record dates back to 18489], refers to the fact
of reconstructed phase space trajectories can be guaranteétht(preferentially in a relaxed stgtbeartbeat intervals have
This guaranty is enforced by a related implicit estimationthe tendency to become shorter during inspiration and longer
during expiration20,21]. Numerous studies can be taken as
evidence that the main part of this interaction is not a me-
*Email address: f.drepper@fz-juelich.de chanical one but a neural one linking cardiopulmonary and

1063-651X/2000/6(5)/63767)/$15.00 PRE 62 6376 ©2000 The American Physical Society



PRE 62 ASYMPTOTICALLY STABLE PHASE SYNCHRONIZATION . .. 6377

respiratory centers in the brain stdi22,23 as well as pe- TABLE |. Coefficients 3, y, and § of canonical phases FIPS
ripheral barorecepto2,24]. Prior to its application to the maps and defined by two linear functiobgandL, describing two
empirical example, the unusual method of time series analyorthogonal projections in the primary reconstruction space.

sis is tested on a two-dimensional, time discrete model sys=

tem. Ly(X0,X1,X3) Lx(X0,X1,X2) B b 6
(sina)X;+(cosa)X, (cosa)X;—(sina)X, «a a @

CANONICAL PHASES (Xo+2X,+X5) /6 (Xo—X2)IV2 w3 w6 6

The first step of a FIPS map analysis introduces polafXo~2X1+X2)/ 6 (Xo=Xz)/\2 @3 576 ml6

angles into a delay coordinate bagpdmary) reconstruction
space of an oscillating signafX,/n=0,1,... N+1}

. ' For canonical phasds, andL, have to be chosen in such a
sampled at time$t,|n=0,1, ... N+1}. The sampling rate

. eenl - way that there exists a complete set of linear independent
is assumed to lie in the range from about three to eighktionsH; for which eachH; has at most four nonzero
samples per lowestypical) cycle length. Furthermore, it is components. Furthermore, these nonzero components have
assumed that time averages of the signal are close to ze{g f,ifi| the property that every single equation @ relates

when their range extends over periods that are large in COmy, |y one pair of radii and corresponding angles. In the case
parison to the largest typicalecurrent cycle length. To en- ot 4 qiacent pairs, constraint sé8) assumes the simplified
sure these two features, a low and/or high pass filter mig

have to be applied in a preparatory step. In contrast to the

well-known Hilbert phasd4-7], a low dimensional phase rj+1€08 @ 1~ B)—r;sine;—y)=0 for j=1,...7,
definition space is used. For notional simplicity its dimension (4)

will be restricted to a maximum of three. Within this space )

two linear functionsL, andL, are chosen that express pro- Where the constanig and y can be expected to have fo
jections along two different orthogonal directions definingdependence due to translational symmetry in time. The ca-

the polar axis. Based on these two functions, sigkals ~ nonical form of constraint se) implies a separation of the
transformed into a set of phases and ral,,r,jn  constraints into restrictions on combinations of succeeding

=1,... N}, where phases and those on succeeding radii. If one of the angular
functions becomes zero the other one has to be zero as well.
en=arctanZL (X, 1,Xp, Xn11),Ly(Xn-1,Xn, Xn11)], Once a permissible set of phases is obtained,(8qcan be

(1a interpreted as recursion formula for the radii. Canonical

phases do not automatically guarantee the diffeomorphic
character of their backtransformation; however, the simple
(radius independentform of the restriction on successive
phases opens the way to defining reconstructions of phases
that are diffeomorphically related to the corresponding re-
constructions of the original coordinates.

In the case of a two-dimensional phase definition space
there exists a one-parameter family of canonical phases de-
fined by Ly=(cosa)X,—(sin@)X,;; and L,=(sina)X,
+(cosa)X,.,, leading to J=N-1, H;=(tana,l,

@) —1,tane,0, .. .,0), H2=(0,0,tana,l,-— l,tana,O,.. ..,0),
Ly(Xn_1.Xn.Xns 1) =Fnsing,, for n=12,...N. and toB=y=a. The examples of this stqdy will use the
simplest symmetric case=0. Table | also lists two three-
For given phases, and radiir,,, equation set2) represents dimensional cases:L,=(Xn-1=Xq+1)/v2, Ly=(Xp-1
an overdetermined linear equation systemXgr ... Xys1  =2Xn+Xn+1)/\/6, leading toJ=N—-2 andH;=(1,-v3,
with at leastN—2 invertibility constraints on the left hand *1,=v3,0,...,0). Thefirst of these can be interpreted as
side of Eq.(2). These constraints impose restrictions on thethe finite dimensional analog of the Hilbert phase. The sec-
set of possible combinations of succeeding values,aind  ond example is of particular interest for highly nonstationary
¢, for which the backtransformation to original coordinatesdata, because in this case both linear functions represent a
X, is feasible. TheJ=N—2 constraints on the inhomoge- hlgh pass filter. All cases in Table | can be generalized by
neous part of Eq(2) can be expressed with the help of a setintroducing a shift of the centépolar axig along the space
of linear independent solutiof#d;|j=1, ... J} of the cor-  diagonal or by coarsening the time step length used for the
responding homogeneous transposed equation system. Thé&kgfinition of the primary reconstruction space. An example
nontrivial solutions are assumed to span the so-called nuin place isL,=X,_; andL,=X, ;. Such coarsening of the

space. The right hand side of E®) has to be orthogonal to time scale might be useful when the sampling rate is higher
all these solutions, i.e., than 8 samples per period. For notational simplicity these

cases will not be treated explicitly in the following.

Fn= VLeXn-1,Xn . Xns1) + LI (X1, Xn Xps1). (1D)

The bivariate function arctan2y) extends the range of
arctang/x) to the full circle from— to 7. Equations(1a)
and (1b) represent a transformatidiM *>—R?N. As an in-
termediate step toward its inversion, transformatibhcan
be brought into the following implicit form:

Lx(Xn-1:X5,Xn41) =T, COS@y,,

N
nZl [Hj,anlrn COS‘Pn‘l'Hj,ann sind)n]:O FIPS MAPS

The next analytical step replaces the well-known Takens
for j=1,...J. (3)  type reconstructior1,2] by a reconstruction based on de-
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layed canonical phasd®5]. A central problem of phase [tan( ¢, 1— B)—tan(6— B)]sin( ¢, — v)
space reconstruction is the unavoidable correlation of succes-
sive phases due to their nonlocal-in-time relationship to the =G(en,en-1,---). (8)

original coordinates. The followindphase type homog-

enous function of degree zero evidences zero autocorrelatigl analogy to Eq(6) the phenomenologicdFIPS map gen-

for a white noise signaX and is therefore particularly suited erating function G can be approximated efficiently by a fi-

to act as the left hand side of a phenomenological regressiofite Fourier series. As can easily be seen from @By, the

model: finiteness of the estimated parameters guarantees the diffeo-
morphic character of transformatidh) by avoiding singular

Xn+2 —F ) ) combinations of successive phases defined by the angular

rh (¢ns@n-1, - ). part of constraint set4). Due to their smooth invertibility,
FIPS map reconstructions based on one of the canonical

Since all functions of phases can be assumed to be periodjthases can be transformed in a topologically equivalent way

with period 27, the functionF can be approximated effi- to all other canonical phases. Furthermore, in the case of

ciently by a finite Fourier series, two-dimensional canonical phases the reconstructions for
different « turn out to be identical.
F(en @n_1,s---) Now the choice of the term *“canonical phase” has be-

come more obvious. The enlargement of Melimensional
. phase space by additional, canonically conjugate radii has
_kzoJ;L, L (3, ... costkentlen o t--) created the possibility of defining canonical transformations
_ R2N— R?N that preserve the form of the equations of motion:
+by, .. sin(kgy+1@,-1+--)].  (6)  the recursion formula for the radii given in E@) as well as
the autoregressive circle mdp). Solving Eq.(8) for ¢, 1

k=K,I=L, ...

Each pair of parametersy, . and by, .. can be |eads to the explicit form of the FIPS map,
aggregated to a corresponding amplitudéy
=\aZ, +bZ, . The zero autocorrelation property jus- ;
=arctan?si -%).G s Pty -
tifies the simplifying assumption of independently and iden- Pni1 2sin(en=7).Glen en-1 )
tically distributed residuals of ansatz). Thus the additional +tan 86— B)sin(¢,— y) ]+ B, 9

assumption of Gaussian distributed residuals reduces the
maximum likelihood estimation of the parameters to the

o : whereG(¢,,¢n_1, - - . ) represents the estimated FIPS map
fézrrlgssric:)ﬁroblem known as multivariate linear least SAUar€Senerating function. Stochastic reconstructions are obtained

. . . . by adding state independent white noise to the generating
However, for awh|.te noise signal th.e left hand ‘?"de. of Eq'function. The standard deviations of the noise terms can be
(5) is known to be distributed according totalistribution

. SO related to the standard errors of the corresponding linear re-
with two degrees of freedom, a distribution that clearly de- b g

. ) . ressions(Table Il uses Gaussian white noise with a stan-
viates from the Gaussian. Study of the histograms of sever ard deviation reduced by 1J2
examplegincluding those of the present stydyuggests that '

a distribution with a Gaussian center and exponentially dis FIPS maps can be generalized to the multivariate case
. . . - characterized by additional signals and corresponding phases
tributed tails(starting at about one standard deviajioep- y 9 P gp

S r)(spreferentially of the same canonical typé-or notational
. ) implicity we assume that the FIPS map generating function
based on suclior other self-consistently chosedistribu- phcity P g

. ) ; : . . G s extended by one single phageThus the finite Fourier
tions can easily be approximated with the help of an iterativey oo 6) descri)t/)ing thegaut%n?rﬁous behavior has to be

weighted least squares algorithm starting with the Gauss'ag'upplemented by further terms describing the cross impact
casTeH timates of th " ¢ ready b (or mutual control of the two oscillators: the open loop part
€ estimates of the parameters of E).can already be depending exclusively on phageand the closed loop part

used t?hrecl:o][:saruc;a F&me ?elges); hO\{[VGVGI’, V\]ﬁe prefe'r tol € “ontaining the mixed terms. In the latter part at least two of
press the left hand side of E@5) in terms of canonica r;[(l]e indicesk|. ... are nonzero:

phases. When using two-dimensional phases, the left hal
side can be expressed directly in terms of phagsges; and

¢,. However, in the three-dimensional cases of Table | thé3(@n . @n-1, - - - W thn-1, .. .)
left-hand side of Eq(5) has to be extended by a second

S - =F v Pn—1y - -
similar expression, (en @n-1,--.)

k=K,l=L, ...
Tl : + o cog ki + 1y 14+
M:\/__ ta (Pn+1_z +tal T sin(@,— ). k:O,I:E—L,___[ kl, ... gkipn+ 1y )
rn 2 3 6
(@) +Pk, . Sin(Kgn+ g +)]
k=K,l=L, ...

All cases can be summarized in the general implicit form of
the (univariate FIPS map containing three constag@sy, 6 +k=7K|E=7L [Cky, ... codkentlgpt---)

which differ for the different canonical phases as indicated in o

Table I: +dy, . sin(keg+lgn+-o)]. (10)
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The dynamics of/ are described by the analogs of E¢®.  For coordinated dynamics the residence time is large in com-
and (10) with exchanged roles ofp and . Cross-impact parison to the larger of the two average cycle lengths. The
amplitudes likeO,, =02, +pZ, are defined in anal- relative residence time is the ratio to this cycle length.

ogy to their autonomous counterparts. In contrast to the last criterion the first two also allow the
determination of the direction of an interaction. If the dy-
CONDITIONAL ASYMPTOTIC STABILITY namics of a subsystem is found to be asymptotically stable

under the evident influence of the other subsystem, we can

The reconstruction of coupled bivariate dynamics can bespeak of conditional asymptotic stability.
used to execute a gedanken experiment designed to identify Unilateral conditional asymptotic stability of one of two
asymptotic stability(AS) [12] which can be examined with oscillators(the passive oneguarantees that the active oscil-
the help of conditional Liapunov exponeritsE’s) [14]. The  lator exerts an evident effect on the passive one and that this
latter are based on an experiment where the dynamics of oredfect is reproducible irrespective of past and present states
of the two coupled oscillatorgsubsystemsis temporarily  of the passive subsystefwithin a certain local neighbor-
disturbed and the dynamics of the other oscillator is kephood of the reference trajectoryHowever, this effect is de-
fixed corresponding to the unperturbed attractor. A negativ@endent on past and/or present states of the active oscillator.
(largesj conditional LE indicates that thgveakly) perturbed This means that there exists a set of states of the active
subsystem approaches the reference trajectory in such a wagcillator that uniquely determines a state of the passive os-
that the initial perturbation is forgotten. If this holds, the cillator. In the case of “generalized synchronization in uni-
conditional LE quantifies the asymptotic exponential rate ofdirectionally coupled systems[15] this active history of
convergence or AS. Efficient algorithms for normal and con-states degenerates to the simultaneous state of the active os-
ditional LE’s make use of the Jacobi matfig] [linear ex- cillator, leading to the well-known Afraimovich map relating
pansion around the momentary state of autoregressive circmultaneous statefl13]. Note that asymptotically stable
map (9) and (10)]. phase synchronizatioriwith n:m#1:1 coordinatiohn in-

To make sure that the asymptotic stability of the per-cludes cases with a finite length active history.
turbed subsystem is not a trivial one resulting either from a In the case of bilateral conditional asymptotic stability, it
periodic attractor of an exclusively autonomous dynamics ofs important to note that the passive reference trajectory in
from a fixed point, a second criterion is necessary whichone of the two gedanken experiments is identical to the tra-
ensures an asymptotically noticeable cross impact from thgectory with the active role in the other gedanken experi-
second subsystem. One way to achieve this is to compare tmeent. This means that there exist two unique maps acting in
conditional predictability with the corresponding uncondi- opposite directions, which relate subsets of states of one tra-
tional (autonomoupvalue. This can be done based on locally jectory to single states of the other. In many cases the two
linear prediction[17], corresponding nearest neighbor statis-maps will simplify to a single invertible map. To avoid a
tics [26], or FIPS map reconstruction. conflict with the existing notion of phase synchronization, all

A second particularly attractive way in the present contexicases of either unilateral or bilateral conditional asymptotic
is to use a significance test for nonzero cross-impact amplistability with either zero or finite length history m@ap
tudes of the corresponding FIPS map. The sum of squares should fall under the notion of generalized synchronization.
the ratios of the constituents of open loop cross img@ath Like normal Liapunov exponents the conditional ones are
their own estimation errors, for example, represents a usefubpological invariants. The equivalence of FIPS map recon-
statistic (for testing the presence of simultaneous cross imstructions for different canonical phases is the basis for de-

pach: tecting conditional asymptotic stability of canonical phases
as a robust system property independent of the particular
« oﬁ’O’ o pﬁ’oy o choice of the phase. Note that residence times in one particu-

(11 lar phase coordination mode are not topologically invariant
and are known to depend strongly on, e.g., the high pass
filter used for the preprocessing.

Prior to the application of these concepts to cardiorespi-
ratory interaction, a mathematical model is chosen as a test

= Aoﬁ‘oym APE,O,... '
For ideal surrogates it is approximatep? distributed with
2K degrees of freedom.

A third way to find evidence for an interaction is based on
the well-known phase synchronization criterion. This crite-68S€:
rion imposes constraints on the difference between integer 03y a—0.00X
multiples of the two phases under stud7], Xn+1=208720Xqe "+6kntl, 19
Ind; —mW¥,|<const, (12) Y, 1= 23e0%ny @  000ICKRTA=CI¥n) 4 4\ 41

where®; and ®; denote the unlimitedsmoothed outex-  where ¢,,{, represent independently(0,1) distributed
tensions ofe; and ;. To account for gliding coordination Gaussian random numbers argh two corresponding uni-
[27] (phase slips extensions to this strict definition of phase form random processe$A more symmetric version of the
coordination have been proposed, which include more gemrmodel might be considered as useful to study functional ag-
eral properties of the above phase differef&&,11,28. One  gregation in a two-“species” ecosystem of two virulent
of these extensions is based on residence tif@8kin the  populations, like(yearly) measles casef9] in two large
phase coordination mode. The residence time is determinagkighboring citieg.The phase correspondingXas obtained

as the average waiting time until conditioh?) is violated.  as ¢, =arctan2(logyX,,— 3,l0g,0X,+1—3) and the second
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TABLE Il. Results of a study of the model given in EG.3) which are explained in the text.

Conditional Liapunov _ x? statistics for
exponent Relative cross impact
residence
Case v @ time ] @
C=0.6, simulation reconstruction 0.28 —-0.29 6.0
0.36+0.03 —0.47+0.03 7.4-1.0 4.4-2.1 125-3.5
C=0.2, simulation reconstruction 0.28 0.12 2.8

0.34+0.02 0.16:0.04 2.9:0.4 4124 41079

phase¢ in complete analogy. As can be seen from lines 1 The second and third lines of Table Il indicate averages
and 3 of Table Il, the parameter values are chosen in suchand standard deviations of FIPS map reconstructed condi-
way that the conditional Liapunov exponent of oscillagas  tional LE’s, relative residence times, and test statistics for
negative forC= 0.6 and slightly positive fo€=0.2. FIPS nonzero cross impact. The comparatively small standard de-
map reconstructions based on the phenomenologitsdtz  viations demonstrate the high degree of reproducibility of the
FIPS map reconstruction. In view of the arbitrarily chosen

4 reduction factoK3) of the noise level used for the reconstruc-
tan(¢n+1)SiN(@p) =ag+ 2 AyoSin(ken+ ay) tion, the average conditional LE’s and residence times are in
k=1 reasonable agreement with the corresponding values ob-
4 tained directly from the model. The? statistics(for 10 de-
+ k22 Oy oSin(ken+ wy o) grees of freedofnleave no doubt about the presence of cross

impact(the 99.9% significance level is about)3@s should
+Cp 1 SIN@n— P+ ¥1-1) be expected, the large difference betvv_een_the test statistics

for the two phases expresses the unidirectional character of
+Cypa18in(en+ ¥yt v10) (14)  the coupling.

and the symmetric analog fa¥ have been generated for 12
consecutive sections containing 500 pairs of phases each
(Fig. 1). To avoid the more involved version of linear regres-  The empirical example is based on 20 min recordings of
sion based on singular value decomposition in the ¢ase cardiorespiratory data from each of a group of 12 healthy,
=0.6 (with near identical phase synchronizatipthe first  young adult, male volunteers in a relaxed state. The cardiac
order open loop terms have been eliminated. As an examplsignal is represented by heartbeat interva{s,/n

Fig. 1 shows one of the estimated FIPS map generating func=0,1, ... N} and the respiratory signal by airflojF,

CARDIORESPIRATORY INTERACTION

tions for the reconstruction af. =F(t,)|n=0, ... N} sampled at the nonequidistant set of
points in time{t,|t,=t,_;+1,_1;n=1,... N} defined by
3 ‘ systolic events. Both signals are subjected to a high pass
filter eliminating the frequency components below 0.1 Hz.
2t 1 This sets the focus on the respiratory sinus arrhythmia at

about 0.25 Hz as well as on its first subharm@s)ic¢Fig. 2).
The cardiac signdl is transformed into a set of cardiorespi-
ratory phase$e,/n=1, ... N} andF is transformed analo-
gously into respiratory phases,. For each subject, 10 par-

Gly.¢)

0.1

8
5
2of z 0
©
3 ‘ ®
0 1 2
v -0.1
FIG. 1. Reconstruction generating functi@{, ¢) as function 660 time [s] 700

of ¢ for the driver dynamics of modélL3) with C=0.2. The 500

open circles represent the corresponding input values to the estima- FIG. 2. High pass filtered heartbeat interval lendfiod circles)

tion based on(ignorant, symmetric ansatz(14); and full circles and high pass filtered respiratory flow sign@pen squargs
represent the resulting reconstruction. The hardly noticeablsampled at systolic events 670—730 of subject 9. The heartbeat
“noise” of the deterministic reconstruction results from an ex- intervals(relative deviations from an average of 957)nase ob-
tremely weak coupling to the response dynamics—a fact that retained from an electrocardiogram recording sampled at 1 KHz and
flects the near perfect “recognition” of the unidirectional coupling. the flow signal is obtained from an uncalibrated thermistor attached
Phasey is given in units ofr. to the nose.
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tially overlapping sets of 300 heartbeat lengths and 2
corresponding systolic airflows are selected to estimate a
FIPS map according to

¢
3
tar ¢n.1)sin(@n) =ag+ 2 [Acosin(kent o)

+ Aoy SiN(Kep o+ agy) ]
3

+ 2 Oosin(kiin+ wico)

+Cq-1SIN(@n— ¢Pnt+v1,-1)
+Cy1sin(en+ dnt y1,0 (15

and the symmetric respiratory analog. In all 120 casegthe o _ )

statistics for first order open loop, respiration induced cross FIG. 3. Projection of a cardiorespiratory FIPS map reconstruc-
impact O, o are found to be significant at the 99.9% limit tlpn for subject 9(full circles) on the plane deflneq by the two
(compared to no cases for surrogate data obtained by a tinfnultaneous phases and corresponding scatter diagram of the un-
shift of 100 heartbeats between the two cardiorespiratory sigi€'lying empirical data300 open circles, partially shown in Figl.2
nalg. The corresponding statistics for the open loop cross h's.proje(?t'on reveals an ?Symptouca"y .Stable map, Wh'ch relates
impact actingon the respiration turn out to be significant in cardiorespiratory phase unlguely to the smultapeous respiratory
64 casegat the 95% limij. The FIPS map reconstruction phasey. Bqth. phases are given in units of SUb".aCt .9 evidences
evidences 118 cases with nontriviabn-fixed-poin} attrac- strong deviations from identical phase synchronization.

tors. Their conditional Liapunov exponentsc(A;) reveal  cardigrespiratory interaction than measures based on either
116 cases with conditional asymptotic stability of the cardio-,¢ degree of phase lockir§,18] or the degree of phase
respiratory phasen.< —0.1) and 48 cases of bilateral con- coordination[6,28]. '

ditional AS (A;=—0.05). The near ubiquitous conditional  The cross impacts between the two respiration related
AS of the cardiorespiratory phase, in particular, has als,scijlators evidence a clear asymmetry. The near perma-
been found for a truncation of the Fourier series at seconflant cross impact on the cardiorespiratory phase is con-

order. In 104 cases the deterministic reconstruction evVigasted with a(weakej temporarily active cross impact
dences d1:1) phase coordination according to E§i2) (rela-  ony the respiratory one. The two oscillators are known

tive residence time 10) and in 12 more cases eith@3) or (o differ in their accessibility to voluntary actiof20,30)

(1:2) coordination is encounteredThe latter numbers are 5 well as to conscious self-perception. It is hypothesized
obviously dependent on the cutoff frequency of the high pasg,at a significant conditional asymptotic stability of the
filter.) ) ) respiratory phase conditioned on the cardiorespiratory
_In 102 cases the largest LE@f the combined dynami¢s  one can be taken as an indicator of involuntary, spontaneous
is close to zero, indicating quasiperiodic motion and thépreathing, and the evident absence of cross impact from
appearance of a one-dimensional manif@drve) relating  the cardiorespiratory phase on the respiratory one as an
the respiration related phases. Its two-dimensional progopjective indicator for active, voluntary respiration. The
jection on the plane of the simultaneous phases can be usggle of the astonishingly rich variety of different synch-

for characterization of the degree of deviation from iden-gpization patterns should be analyzed by further empirical
tical phase synchronizatiofFig. 3). The first qualitative gt gies.

step of deviation from a straight line is characterized by non-

monotonicities of thep,, vs ¢, map(Fig. 3) and the second CONCLUSION
qualitative step by nonuniqueness of this map, indicating
an active history of the respiratory phase:fi#1:1). After more than 150 years of scientific recofd®] the

Whereas more than half of the subjects evidence mond-influence of respiratory movement on the blood current”
tonic, invertible Afraimovich maps, a few subjects showcan be described as asymptotic stability of a unique map,
strong deviations from identical phase synchronizationwhich relates the phase of the heartbeat modulation in the
The nonmonotonicities occur at typical respiratory phase$requency range of breathing to phases of the respiratory
(Fig. 3. activity and which often fulfils th€1:1) phase coordination
Temporarily, the conditional asymptotic stability enters criterion. The uni- or bilateral conditional asymptotic stabil-
a higher state of order characterized by a negative largedty has been identified in reconstructions of cardiorespiratory
LE, a discrete definition set of the asymptotically stabledata of 12 subjects based on finite order fourier approxi-
maps, and commensurability to a certain number of sampmated, invertibility enforcing phase space maps. FIPS map
ling intervals[6,18]. However, such cases of “phase lock- dynamics are shown to be topologically equivalent for a
ing” represent only a minor subset. It is expected thatwhole set of different canonical phases. In connection with
amplitudes of the cross impact on the cardiorespiratory phagie topological invariance of Liapunov exponents, this is the
constitute more robust and/or specific measures of thbasis for detecting conditional AS as a robust system prop-
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erty. Conditional AS includes evidence for the presence ofn the more general context of brain science, cardiorespira-
cross impact. When applied to FIPS map reconstructions dbry interaction may turn out to be a prototype system to
time series, it represents a criterion that unites several norfurther the understanding of the two philosophically charged
exclusive synchronization phenomena including differentdichotomies voluntary vs involuntary action and consciously
types of f1:m) phase synchronization, generalized synchroperceived vs unconscious brain processes, in terms of FIPS
nization of unidirectionally coupled phases, and commensumap reconstructed neural dynamics.

rability to sampling intervals. Apart from being more robust

and general, FIPS map based criteria are potentially more ACKNOWLEDGMENTS
specific than existing synchronization or coordination criteria
applicable to time serief5—7,11,15,17-18,28,30Signifi- | extend my thanks for helpful discussions to M. Schiek,

cance tests for nonzero cross-impact amplitudes of FIP®. Grassberger, H. Halling, P. Tass, and H. llst
maps can be used as a sensitive indicator for the presence Kfumbhaar, Jlich, N. Stollenwerk, Cambridge, U.K., R.
interaction, including the possibility of distinguishing unidi- Engbert, Potsdam, J. Schnakenberg, Aachen, and to H.-H.
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