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Asymptotically stable phase synchronization revealed by autoregressive circle maps

F. R. Drepper*
Zentrallabor für Elektronik, Forschungszentrum Ju¨lich GmbH, D-52425 Ju¨lich, Germany

~Received 7 June 2000!

A specially designed of nonlinear time series analysis is introduced based on phases, which are defined as
polar angles in spaces spanned by a finite number of delayed coordinates. A canonical choice of the polar axis
and a related implicit estimation scheme for the potentially underlying autoregressive circle map~next phase
map! guarantee the invertibility of reconstructed phase space trajectories to the original coordinates. The
resulting Fourier approximated, invertibility enforcing phase space map allows us to detect conditional
asymptotic stability of coupled phases. This comparatively general synchronization criterion unites two exist-
ing generalizations of the old concept and can successfully be applied, e.g., to phases obtained from electro-
cardiogram and airflow recordings characterizing cardiorespiratory interaction.

PACS number~s!: 05.45.Xt, 05.45.Tp, 87.19.Hh, 87.80.Vt
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INTRODUCTION

The relevance of deterministic dynamics is not limited
situations where the rules of change can be derived b
mechanistic~deductive! approach. The alternative~induc-
tive! approach is aimed at the estimation of phenomenolo
cal dynamic models, based on the use of a sufficient amo
of empirical data. A common starting point in modern, no
linear time series analysis@1–3# is the assumption that a sta
space reconstruction based on a finite number of succee
samples~coordinates! represents an embedding of the und
lying deterministic dynamics, i.e., reconstruction and ori
nal dynamics are expected to be topologically equivale
This implies the existence of a diffeomorphic map~a smooth
map with a smooth inverse! linking reconstructed attractor
to those of the underlying dynamics.

One of the major problems in nonlinear time series ana
sis is to find a sufficiently general class of autoregress
models for which the parameter estimation~regression! prob-
lem is feasible. One promising solution is the introduction
angle or phase type variables prior to the estimation s
Due to the periodic character of phase variables this a
tional transformation allows the use of finite Fourier series
approximate the phase space dynamics.~It is important to
note that the notion ‘‘phase space’’ is often used as a s
onym for state space, in contrast to the present, more
cific, meaning based on angles.! However, the transforma
tion of time series to the well-known Hilbert phase@4–7# is
an irreversible step which excludes, e.g., studies of the tr
formation property of Hilbert phase dynamics to the origin
coordinates or to different phase type variables. As a rela
feature, Hilbert phases evidence a trivial long-range auto
relation, which is difficult to distinguish from an underlyin
determinism.

A basic idea of the present study is to use the ambig
of the phase definition to select a special class of~canonical!
phases, for which the smoothness of the backtransforma
of reconstructed phase space trajectories can be guaran
This guaranty is enforced by a related implicit estimati
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approach to autoregressive circle maps~next phase maps!
which express thea priori correlation of successive phase
and the potentially underlying low dimensional dynamic
Thus, Fourier approximated, invertibility enforcing pha
space~FIPS! maps may be seen as a promising alternative
existing global approximation methods in nonlinear time
ries analysis like radial basis function approximation@8,9#.
The main advantage, however, comes into view in the m
tivariate case where FIPS maps can be used to analyze
chronization phenomena, including those with nonstation
amplitudes.

The old concept@10# of synchronization has recently re
ceived two important extensions@5,6,11–15# opening the no-
tion to nonidentical and aperiodic coupled oscillators: gen
alized synchronization of unidirectionally coupled oscillato
@12–15# and phase synchronization@5,6,11#. The central no-
tion of generalized synchronization is an asymptotica
stable map@12–16# ~Afraimovich map! which relates simul-
taneous states of the two oscillators~subsystems!. The detec-
tion of generalized synchronization in time series analy
has so far been focused on continuity@15# or predictability
@17# properties of the Afraimovich map. The present stu
uses the universal and efficient approximation features
FIPS maps to introduce the asymptotic stability criterion
time series analysis. In spite of the smoothness of the dyn
ics expressed by~finite order! FIPS maps, this criterion is
very flexible concerning the properties of the asymptotica
stable maps. Thus asymptotic stability of coupled FIPS m
reconstructions turns out to be a unifying criterion for
wealth of synchronization phenomena including generali
synchronization in unidirectionally coupled systems and
whole family of (n:m) phase synchronizations.

The asymptotic stability criterion contributes to the a
swer of a recently disputed question in theoretical phys
ogy: whether cardiorespiratory interaction leads to synch
nization @6,18#. Cardiorespiratory interaction, whos
scientific record dates back to 1849@19#, refers to the fact
that~preferentially in a relaxed state! heartbeat intervals hav
the tendency to become shorter during inspiration and lon
during expiration@20,21#. Numerous studies can be taken
evidence that the main part of this interaction is not a m
chanical one but a neural one linking cardiopulmonary a
6376 ©2000 The American Physical Society
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PRE 62 6377ASYMPTOTICALLY STABLE PHASE SYNCHRONIZATION . . .
respiratory centers in the brain stem@22,23# as well as pe-
ripheral baroreceptors@22,24#. Prior to its application to the
empirical example, the unusual method of time series an
sis is tested on a two-dimensional, time discrete model s
tem.

CANONICAL PHASES

The first step of a FIPS map analysis introduces po
angles into a delay coordinate based~primary! reconstruction
space of an oscillating signal$Xnun50,1, . . . ,N11%
sampled at times$tnun50,1, . . . ,N11%. The sampling rate
is assumed to lie in the range from about three to ei
samples per lowest~typical! cycle length. Furthermore, it is
assumed that time averages of the signal are close to
when their range extends over periods that are large in c
parison to the largest typical~recurrent! cycle length. To en-
sure these two features, a low and/or high pass filter m
have to be applied in a preparatory step. In contrast to
well-known Hilbert phase@4–7#, a low dimensional phase
definition space is used. For notional simplicity its dimens
will be restricted to a maximum of three. Within this spa
two linear functionsLx andLy are chosen that express pr
jections along two different orthogonal directions defini
the polar axis. Based on these two functions, signalX is
transformed into a set of phases and radii$wn ,r nun
51, . . . ,N%, where

wn5arctan2@Lx~Xn21 ,Xn ,Xn11!,Ly~Xn21 ,Xn ,Xn11!#,

~1a!

r n5ALx
2~Xn21 ,Xn ,Xn11!1Ly

2~Xn21 ,Xn ,Xn11!. ~1b!

The bivariate function arctan2(x,y) extends the range o
arctan(y/x) to the full circle from2p to p. Equations~1a!
and ~1b! represent a transformationRN12→R2N. As an in-
termediate step toward its inversion, transformation~1! can
be brought into the following implicit form:

Lx~Xn21 ,Xn ,Xn11!5r n coswn ,
~2!

Ly~Xn21 ,Xn ,Xn11!5r n sinwn , for n51,2, . . . ,N.

For given phaseswn and radiir n , equation set~2! represents
an overdetermined linear equation system forX0 , . . . ,XN11
with at leastN22 invertibility constraints on the left han
side of Eq.~2!. These constraints impose restrictions on
set of possible combinations of succeeding values ofr n and
wn for which the backtransformation to original coordinat
Xn is feasible. TheJ>N22 constraints on the inhomoge
neous part of Eq.~2! can be expressed with the help of a s
of linear independent solutions$H j u j 51, . . . ,J% of the cor-
responding homogeneous transposed equation system. T
nontrivial solutions are assumed to span the so-called
space. The right hand side of Eq.~2! has to be orthogonal to
all these solutions, i.e.,

(
n51

N

@H j ,2n21r n coswn1H j ,2nr n sinfn#50

for j 51, . . . ,J. ~3!
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For canonical phasesLx andLy have to be chosen in such
way that there exists a complete set of linear independ
solutionsH j for which eachH j has at most four nonzero
components. Furthermore, these nonzero components
to fulfill the property that every single equation of~3! relates
only one pair of radii and corresponding angles. In the c
of adjacent pairs, constraint set~3! assumes the simplified
form

r j 11 cos~w j 112b!2r j sin~w j2g!50 for j 51, . . . ,J,
~4!

where the constantsb and g can be expected to have noj
dependence due to translational symmetry in time. The
nonical form of constraint set~4! implies a separation of the
constraints into restrictions on combinations of succeed
phases and those on succeeding radii. If one of the ang
functions becomes zero the other one has to be zero as
Once a permissible set of phases is obtained, Eq.~4! can be
interpreted as recursion formula for the radii. Canoni
phases do not automatically guarantee the diffeomorp
character of their backtransformation; however, the sim
~radius independent! form of the restriction on successiv
phases opens the way to defining reconstructions of ph
that are diffeomorphically related to the corresponding
constructions of the original coordinates.

In the case of a two-dimensional phase definition sp
there exists a one-parameter family of canonical phases
fined by Lx5(cosa)Xn2(sina)Xn11 and Ly5(sina)Xn
1(cosa)Xn11, leading to J5N21, H15(tana,1,
21,tana,0, . . .,0), H25(0,0,tana,1,21,tana,0, . . .,0),
and to b5g5a. The examples of this study will use th
simplest symmetric casea50. Table I also lists two three
dimensional cases:Lx5(Xn212Xn11)/&, Ly5(Xn21

62Xn1Xn11)/A6, leading toJ5N22 and H15(1,2),
61,6),0, . . .,0). Thefirst of these can be interpreted a
the finite dimensional analog of the Hilbert phase. The s
ond example is of particular interest for highly nonstationa
data, because in this case both linear functions represe
high pass filter. All cases in Table I can be generalized
introducing a shift of the center~polar axis! along the space
diagonal or by coarsening the time step length used for
definition of the primary reconstruction space. An exam
in place isLx5Xn21 andLy5Xn11 . Such coarsening of the
time scale might be useful when the sampling rate is hig
than 8 samples per period. For notational simplicity the
cases will not be treated explicitly in the following.

FIPS MAPS

The next analytical step replaces the well-known Take
type reconstruction@1,2# by a reconstruction based on d

TABLE I. Coefficientsb, g, and d of canonical phases FIPS
maps and defined by two linear functionsLx andLy describing two
orthogonal projections in the primary reconstruction space.

Ly(X0 ,X1 ,X2) Lx(X0 ,X1 ,X2) b g d

(sina)X11(cosa)X2 (cosa)X12(sina)X2 a a a

(X012X11X2)/A6 (X02X2)/& p/3 p/6 p/6

(X022X11X2)/A6 (X02X2)/A2 p/3 25p/6 p/6
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6378 PRE 62F. R. DREPPER
layed canonical phases@25#. A central problem of phase
space reconstruction is the unavoidable correlation of suc
sive phases due to their nonlocal-in-time relationship to
original coordinates. The following~phase type! homog-
enous function of degree zero evidences zero autocorrela
for a white noise signalX and is therefore particularly suite
to act as the left hand side of a phenomenological regres
model:

Xn12

r n
5F~wn ,wn21 , . . . !. ~5!

Since all functions of phases can be assumed to be per
with period 2p, the functionF can be approximated effi
ciently by a finite Fourier series,

F~wn ,wn21 , . . . !

5 (
k50,l 52L, . . .

k5K,l 5L, . . .

@ak,l , . . . cos~kwn1 lwn211¯ !

1bk,l , . . . sin~kwn1 lwn211¯ !#. ~6!

Each pair of parametersak,l , . . . and bk,l , . . . can be
aggregated to a corresponding amplitudeAk,l , . . .

5Aak,l , . . .
2 1bk,l , . . .

2 . The zero autocorrelation property ju
tifies the simplifying assumption of independently and ide
tically distributed residuals of ansatz~5!. Thus the additional
assumption of Gaussian distributed residuals reduces
maximum likelihood estimation of the parameters to t
standard problem known as multivariate linear least squ
regression.

However, for a white noise signal the left hand side of E
~5! is known to be distributed according to at distribution
with two degrees of freedom, a distribution that clearly d
viates from the Gaussian. Study of the histograms of sev
examples~including those of the present study! suggests tha
a distribution with a Gaussian center and exponentially d
tributed tails~starting at about one standard deviation! rep-
resents a good choice. The maximum likelihood estimat
based on such~or other self-consistently chosen! distribu-
tions can easily be approximated with the help of an itera
weighted least squares algorithm starting with the Gaus
case.

The estimates of the parameters of Eq.~6! can already be
used to reconstruct a time series; however, we prefer to
press the left hand side of Eq.~5! in terms of canonical
phases. When using two-dimensional phases, the left h
side can be expressed directly in terms of phaseswn11 and
wn . However, in the three-dimensional cases of Table I
left-hand side of Eq.~5! has to be extended by a seco
similar expression,

Xn126Xn11

r n
5

A6

2 F tanS wn112
p

3 D1tanS p

6 D Gsin~wn2g!.

~7!

All cases can be summarized in the general implicit form
the ~univariate! FIPS map containing three constantsb, g, d
which differ for the different canonical phases as indicated
Table I:
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@ tan~wn112b!2tan~d2b!#sin~wn2g!

5G~wn ,wn21 , . . . !. ~8!

In analogy to Eq.~6! the phenomenological~FIPS map gen-
erating! function G can be approximated efficiently by a fi
nite Fourier series. As can easily be seen from Eq.~8!, the
finiteness of the estimated parameters guarantees the di
morphic character of transformation~1! by avoiding singular
combinations of successive phases defined by the ang
part of constraint set~4!. Due to their smooth invertibility,
FIPS map reconstructions based on one of the canon
phases can be transformed in a topologically equivalent w
to all other canonical phases. Furthermore, in the case
two-dimensional canonical phases the reconstructions
different a turn out to be identical.

Now the choice of the term ‘‘canonical phase’’ has b
come more obvious. The enlargement of theN-dimensional
phase space byN additional, canonically conjugate radii ha
created the possibility of defining canonical transformatio
R2N→R2N that preserve the form of the equations of motio
the recursion formula for the radii given in Eq.~4! as well as
the autoregressive circle map~8!. Solving Eq.~8! for wn11
leads to the explicit form of the FIPS map,

wn115arctan2@sin~wn2g!,G~wn ,wn21 , . . . !

1tan~d2b!sin~wn2g!#1b, ~9!

whereG(wn ,wn21 , . . . ) represents the estimated FIPS m
generating function. Stochastic reconstructions are obta
by adding state independent white noise to the genera
function. The standard deviations of the noise terms can
related to the standard errors of the corresponding linear
gressions.~Table II uses Gaussian white noise with a sta
dard deviation reduced by 1/2.!

FIPS maps can be generalized to the multivariate c
characterized by additional signals and corresponding ph
~preferentially of the same canonical type!. For notational
simplicity we assume that the FIPS map generating func
G is extended by one single phasec. Thus the finite Fourier
series ~6! describing the autonomous behavior has to
supplemented by further terms describing the cross imp
~or mutual control! of the two oscillators: the open loop pa
depending exclusively on phasec and the closed loop par
containing the mixed terms. In the latter part at least two
the indicesk,l, . . . are nonzero:

G~wn ,wn21 , . . . ;cn ,cn21 , . . . !

5F~wn ,wn21 , . . . !

1 (
k50,l 52L, . . .

k5K,l 5L, . . .

@ok,l , . . . cos~kcn1 lcn211¯ !

1pk,l , . . . sin~kcn1 lcn211¯ !#

1 (
k52K,l 52L, . . .

k5K,l 5L, . . .

@ck,l , . . . cos~kwn1 lcn1¯ !

1dk,l , . . . sin~kwn1 lcn1¯ !#. ~10!
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The dynamics ofc are described by the analogs of Eqs.~8!
and ~10! with exchanged roles ofw and c. Cross-impact
amplitudes likeOk,l ,...5Aok,l ,...

2 1pk,l ,...
2 are defined in anal-

ogy to their autonomous counterparts.

CONDITIONAL ASYMPTOTIC STABILITY

The reconstruction of coupled bivariate dynamics can
used to execute a gedanken experiment designed to ide
asymptotic stability~AS! @12# which can be examined with
the help of conditional Liapunov exponents~LE’s! @14#. The
latter are based on an experiment where the dynamics of
of the two coupled oscillators~subsystems! is temporarily
disturbed and the dynamics of the other oscillator is k
fixed corresponding to the unperturbed attractor. A nega
~largest! conditional LE indicates that the~weakly! perturbed
subsystem approaches the reference trajectory in such a
that the initial perturbation is forgotten. If this holds, th
conditional LE quantifies the asymptotic exponential rate
convergence or AS. Efficient algorithms for normal and co
ditional LE’s make use of the Jacobi matrix@3# @linear ex-
pansion around the momentary state of autoregressive c
map ~9! and ~10!#.

To make sure that the asymptotic stability of the p
turbed subsystem is not a trivial one resulting either from
periodic attractor of an exclusively autonomous dynamics
from a fixed point, a second criterion is necessary wh
ensures an asymptotically noticeable cross impact from
second subsystem. One way to achieve this is to compare
conditional predictability with the corresponding uncond
tional ~autonomous! value. This can be done based on loca
linear prediction@17#, corresponding nearest neighbor stat
tics @26#, or FIPS map reconstruction.

A second particularly attractive way in the present cont
is to use a significance test for nonzero cross-impact am
tudes of the corresponding FIPS map. The sum of square
the ratios of the constituents of open loop cross impactO to
their own estimation errors, for example, represents a us
statistic ~for testing the presence of simultaneous cross
pact!:

xO
2 5 (

k51

K F ok,0, . . .
2

Dok,0, . . .
2 1

pk,0, . . .
2

Dpk,0, . . .
2 G . ~11!

For ideal surrogates it is approximatelyx2 distributed with
2K degrees of freedom.

A third way to find evidence for an interaction is based
the well-known phase synchronization criterion. This cri
rion imposes constraints on the difference between inte
multiples of the two phases under study@5–7#,

unF j2mC j u,const, ~12!

whereF j and F j denote the unlimited~smoothed out! ex-
tensions ofw j and c j . To account for gliding coordination
@27# ~phase slips!, extensions to this strict definition of phas
coordination have been proposed, which include more g
eral properties of the above phase difference@6,7,11,28#. One
of these extensions is based on residence times@29# in the
phase coordination mode. The residence time is determ
as the average waiting time until condition~12! is violated.
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For coordinated dynamics the residence time is large in c
parison to the larger of the two average cycle lengths. T
relative residence time is the ratio to this cycle length.

In contrast to the last criterion the first two also allow t
determination of the direction of an interaction. If the d
namics of a subsystem is found to be asymptotically sta
under the evident influence of the other subsystem, we
speak of conditional asymptotic stability.

Unilateral conditional asymptotic stability of one of tw
oscillators~the passive one! guarantees that the active osc
lator exerts an evident effect on the passive one and that
effect is reproducible irrespective of past and present st
of the passive subsystem~within a certain local neighbor-
hood of the reference trajectory!. However, this effect is de-
pendent on past and/or present states of the active oscill
This means that there exists a set of states of the ac
oscillator that uniquely determines a state of the passive
cillator. In the case of ‘‘generalized synchronization in un
directionally coupled systems’’@15# this active history of
states degenerates to the simultaneous state of the activ
cillator, leading to the well-known Afraimovich map relatin
simultaneous states@13#. Note that asymptotically stable
phase synchronization~with n:mÞ1:1 coordination! in-
cludes cases with a finite length active history.

In the case of bilateral conditional asymptotic stability,
is important to note that the passive reference trajectory
one of the two gedanken experiments is identical to the
jectory with the active role in the other gedanken expe
ment. This means that there exist two unique maps actin
opposite directions, which relate subsets of states of one
jectory to single states of the other. In many cases the
maps will simplify to a single invertible map. To avoid
conflict with the existing notion of phase synchronization,
cases of either unilateral or bilateral conditional asympto
stability with either zero or finite length history map~s!
should fall under the notion of generalized synchronizatio

Like normal Liapunov exponents the conditional ones
topological invariants. The equivalence of FIPS map rec
structions for different canonical phases is the basis for
tecting conditional asymptotic stability of canonical phas
as a robust system property independent of the partic
choice of the phase. Note that residence times in one par
lar phase coordination mode are not topologically invari
and are known to depend strongly on, e.g., the high p
filter used for the preprocessing.

Prior to the application of these concepts to cardiores
ratory interaction, a mathematical model is chosen as a
case,

Xn11520e0.3jnXne20.001Xn16kn11,
~13!

Yn11523e0.2znYne20.001„CXn1~12C!Yn…14ln11

where jn ,zn represent independently,~0,1! distributed
Gaussian random numbers andk,l two corresponding uni-
form random processes.~A more symmetric version of the
model might be considered as useful to study functional
gregation in a two-‘‘species’’ ecosystem of two virule
populations, like~yearly! measles cases@9# in two large
neighboring cities.! The phase corresponding toX is obtained
as cn5arctan2(log10Xn23,log10Xn1123) and the second
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TABLE II. Results of a study of the model given in Eq.~13! which are explained in the text.

Case

Conditional Liapunov
exponent Relative

residence
time

x2 statistics for
cross impact

c w c w

C50.6, simulation reconstruction 0.28 20.29 6.0
0.3660.03 20.4760.03 7.461.0 4.462.1 12563.5

C50.2, simulation reconstruction 0.28 0.12 2.8
0.3460.02 0.1060.04 2.960.4 4.162.4 410679
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phasew in complete analogy. As can be seen from lines
and 3 of Table II, the parameter values are chosen in su
way that the conditional Liapunov exponent of oscillatory is
negative forC50.6 and slightly positive forC50.2. FIPS
map reconstructions based on the phenomenologicalansatz

tan~wn11!sin~wn!5a01 (
k51

4

Ak,0 sin~kwn1ak,0!

1 (
k52

4

Ok,0 sin~kcn1vk,0!

1C1,21 sin~wn2cn1g1,21!

1C1,1sin~wn1cn1g1,1! ~14!

and the symmetric analog forc have been generated for 1
consecutive sections containing 500 pairs of phases e
~Fig. 1!. To avoid the more involved version of linear regre
sion based on singular value decomposition in the casC
50.6 ~with near identical phase synchronization!, the first
order open loop terms have been eliminated. As an exam
Fig. 1 shows one of the estimated FIPS map generating fu
tions for the reconstruction ofc.

FIG. 1. Reconstruction generating functionG(c,w) as function
of c for the driver dynamics of model~13! with C50.2. The 500
open circles represent the corresponding input values to the es
tion based on~ignorant, symmetric! ansatz~14!; and full circles
represent the resulting reconstruction. The hardly noticea
‘‘noise’’ of the deterministic reconstruction results from an e
tremely weak coupling to the response dynamics—a fact that
flects the near perfect ‘‘recognition’’ of the unidirectional couplin
Phasec is given in units ofp.
1
a

ch
-

le
c-

The second and third lines of Table II indicate averag
and standard deviations of FIPS map reconstructed co
tional LE’s, relative residence times, and test statistics
nonzero cross impact. The comparatively small standard
viations demonstrate the high degree of reproducibility of
FIPS map reconstruction. In view of the arbitrarily chos
reduction factor~1

2! of the noise level used for the reconstru
tion, the average conditional LE’s and residence times ar
reasonable agreement with the corresponding values
tained directly from the model. Thex2 statistics~for 10 de-
grees of freedom! leave no doubt about the presence of cro
impact~the 99.9% significance level is about 30!. As should
be expected, the large difference between the test stati
for the two phases expresses the unidirectional characte
the coupling.

CARDIORESPIRATORY INTERACTION

The empirical example is based on 20 min recordings
cardiorespiratory data from each of a group of 12 healt
young adult, male volunteers in a relaxed state. The car
signal is represented by heartbeat intervals$I nun
50,1, . . . ,N% and the respiratory signal by airflow$Fn
5F(tn)un50, . . . ,N% sampled at the nonequidistant set
points in time$tnutn5tn211I n21 ;n51, . . . ,N% defined by
systolic events. Both signals are subjected to a high p
filter eliminating the frequency components below 0.1 H
This sets the focus on the respiratory sinus arrhythmia
about 0.25 Hz as well as on its first subharmonic~s! ~Fig. 2!.
The cardiac signalI is transformed into a set of cardioresp
ratory phases$wnun51, . . . ,N% andF is transformed analo-
gously into respiratory phasescn . For each subject, 10 par

a-

le

e-

FIG. 2. High pass filtered heartbeat interval lengths~full circles!
and high pass filtered respiratory flow signal~open squares!
sampled at systolic events 670–730 of subject 9. The heart
intervals ~relative deviations from an average of 957 ms! are ob-
tained from an electrocardiogram recording sampled at 1 KHz
the flow signal is obtained from an uncalibrated thermistor attac
to the nose.
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tially overlapping sets of 300 heartbeat lengths a
corresponding systolic airflows are selected to estimat
FIPS map according to

tan~wn11!sin~wn!5a01 (
k51

3

@Ak,0 sin~kwn1ak,0!

1A0,k sin~kwn221a0,k!#

1 (
k51

3

Ok,0 sin~kcn1vk,0!

1C1,21 sin~wn2cn1g1,21!

1C1,1sin~wn1cn1g1,1! ~15!

and the symmetric respiratory analog. In all 120 cases thex2

statistics for first order open loop, respiration induced cr
impact O1,0 are found to be significant at the 99.9% lim
~compared to no cases for surrogate data obtained by a
shift of 100 heartbeats between the two cardiorespiratory
nals!. The corresponding statistics for the open loop cr
impact actingon the respiration turn out to be significant
64 cases~at the 95% limit!. The FIPS map reconstructio
evidences 118 cases with nontrivial~non-fixed-point! attrac-
tors. Their conditional Liapunov exponents (lc ,l r) reveal
116 cases with conditional asymptotic stability of the card
respiratory phase (lc<20.1) and 48 cases of bilateral con
ditional AS (l r<20.05). The near ubiquitous condition
AS of the cardiorespiratory phase, in particular, has a
been found for a truncation of the Fourier series at sec
order. In 104 cases the deterministic reconstruction e
dences a~1:1! phase coordination according to Eq.~12! ~rela-
tive residence time>10) and in 12 more cases either~2:3! or
~1:2! coordination is encountered.~The latter numbers are
obviously dependent on the cutoff frequency of the high p
filter.!

In 102 cases the largest LE~of the combined dynamics!
is close to zero, indicating quasiperiodic motion and
appearance of a one-dimensional manifold~curve! relating
the respiration related phases. Its two-dimensional p
jection on the plane of the simultaneous phases can be
for characterization of the degree of deviation from ide
tical phase synchronization~Fig. 3!. The first qualitative
step of deviation from a straight line is characterized by n
monotonicities of thewn vs cn map ~Fig. 3! and the second
qualitative step by nonuniqueness of this map, indicat
an active history of the respiratory phase (n:mÞ1:1).
Whereas more than half of the subjects evidence mo
tonic, invertible Afraimovich maps, a few subjects sho
strong deviations from identical phase synchronizati
The nonmonotonicities occur at typical respiratory pha
~Fig. 3!.

Temporarily, the conditional asymptotic stability ente
a higher state of order characterized by a negative lar
LE, a discrete definition set of the asymptotically stab
maps, and commensurability to a certain number of sa
ling intervals @6,18#. However, such cases of ‘‘phase loc
ing’’ represent only a minor subset. It is expected th
amplitudes of the cross impact on the cardiorespiratory ph
constitute more robust and/or specific measures of
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cardiorespiratory interaction than measures based on e
the degree of phase locking@6,18# or the degree of phas
coordination@6,28#.

The cross impacts between the two respiration rela
oscillators evidence a clear asymmetry. The near per
nent cross impact on the cardiorespiratory phase is c
trasted with a ~weaker! temporarily active cross impac
on the respiratory one. The two oscillators are kno
to differ in their accessibility to voluntary action@20,30#
as well as to conscious self-perception. It is hypothesi
that a significant conditional asymptotic stability of th
respiratory phase conditioned on the cardiorespirat
one can be taken as an indicator of involuntary, spontane
breathing, and the evident absence of cross impact f
the cardiorespiratory phase on the respiratory one as
~objective! indicator for active, voluntary respiration. Th
role of the astonishingly rich variety of different synch
ronization patterns should be analyzed by further empir
studies.

CONCLUSION

After more than 150 years of scientific records@19# the
‘‘influence of respiratory movement on the blood curren
can be described as asymptotic stability of a unique m
which relates the phase of the heartbeat modulation in
frequency range of breathing to phases of the respira
activity and which often fulfils the~1:1! phase coordination
criterion. The uni- or bilateral conditional asymptotic stab
ity has been identified in reconstructions of cardiorespirat
data of 12 subjects based on finite order fourier appro
mated, invertibility enforcing phase space maps. FIPS m
dynamics are shown to be topologically equivalent for
whole set of different canonical phases. In connection w
the topological invariance of Liapunov exponents, this is
basis for detecting conditional AS as a robust system pr

FIG. 3. Projection of a cardiorespiratory FIPS map reconstr
tion for subject 9~full circles! on the plane defined by the tw
simultaneous phases and corresponding scatter diagram of th
derlying empirical data~300 open circles, partially shown in Fig. 2!.
This projection reveals an asymptotically stable map, which rela
cardiorespiratory phasew uniquely to the simultaneous respirato
phasec. Both phases are given in units ofp. Subject 9 evidences
strong deviations from identical phase synchronization.
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erty. Conditional AS includes evidence for the presence
cross impact. When applied to FIPS map reconstruction
time series, it represents a criterion that unites several n
exclusive synchronization phenomena including differ
types of (n:m) phase synchronization, generalized synch
nization of unidirectionally coupled phases, and commen
rability to sampling intervals. Apart from being more robu
and general, FIPS map based criteria are potentially m
specific than existing synchronization or coordination crite
applicable to time series@5–7,11,15,17–18,28,30#. Signifi-
cance tests for nonzero cross-impact amplitudes of F
maps can be used as a sensitive indicator for the presen
interaction, including the possibility of distinguishing unid
rectional coupling or active-passive relationships. The la
features may be used, e.g., to monitor spontaneous breat
9
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In the more general context of brain science, cardioresp
tory interaction may turn out to be a prototype system
further the understanding of the two philosophically charg
dichotomies voluntary vs involuntary action and consciou
perceived vs unconscious brain processes, in terms of F
map reconstructed neural dynamics.
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